89 research outputs found

    Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation

    Get PDF
    Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible “inflations” of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells

    Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    Get PDF
    We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy s=8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the fewz program. The results are also compared to the commonly used leading-order MadGraph and next-to-leading-order powheg generators. © 2015 CERN for the benefit of the CMS Collaboration

    Identification techniques for highly boosted W bosons that decay into hadrons

    Get PDF

    Search for pair production of third-generation scalar leptoquarks and top squarks in proton–proton collisions at

    Get PDF

    Search for new phenomena in monophoton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for single production of scalar leptoquarks in proton-proton collisions at root s=8 TeV

    Get PDF
    Correction DOI:10.1103/PhysRevD.95.039906Peer reviewe
    corecore